Infectious diseases were wreaking widespread havoc long before scientists had any idea what caused them. But knowing the pathogenic agents behind today’s scourges is just the first step in protecting against deadly outbreaks. Roughly 75% of emerging infectious diseases are zoonotic–humans contract them either directly from infected animals or through vectors that feed on infected animals. West Nile virus is the biggest threat in North America, where Culex mosquitoes are the primary vector. Birds are their main target, but mosquitoes also transmit the virus to humans, horses, and other mammals.


Since the virus was first discovered in New York City in 1999, it has infected 20,000 people and killed 770–in stark contrast to the sporadic infections in Europe. The factors behind the North American epidemics are poorly understood, though proposed explanations involve a more virulent strain, North American birds’ ineffectual immune response, and a hybrid species of mosquito that prefers humans over birds. In a new study, A. Marm Kilpatrick, Peter Daszak, and their colleagues now present evidence that a shift in Culex pipiens mosquito feeding behavior from birds to mammals is also driving the epidemics.


A critical factor in predicting the intensity of a zoonotic epidemic involves determining how the vector’s feeding behavior and preferences change over space and time. Birds appear to be West Nile’s most competent vertebrate host–they transmit the virus to other mosquitoes, which supports viral reproduction–while humans (and most other mammals) can’t transmit the virus. The researchers hypothesized that if mosquitoes bit mostly birds in the summer, then switched to humans in the fall, this behavior could intensify both the summer epidemic in mosquitoes and the subsequent transmission to humans.


To investigate this possibility, Kilpatrick et al. collected data from six sites in Maryland and Washington, D. C., from May through September 2004, to determine the population dynamics of birds and mosquitoes, which taxa Culex was targeting, and the epidemiology of the virus. They estimated population densities for mosquitoes and birds at each site, and identified the morphologically cryptic mosquitoes by sequencing their DNA. Over 90% of their catches were Cx. pipiens, which were tested for the virus. The researchers determined species of avian and mammalian targets by sequencing the DNA from blood in engorged mosquitoes

Create a free account with TheHorse.com to view this content.

TheHorse.com is home to thousands of free articles about horse health care. In order to access some of our exclusive free content, you must be signed into TheHorse.com.

Start your free account today!

Already have an account?
and continue reading.