Understanding lasers requires knowledge of how stimulated emission multiplies light and produces the unique differences between coherent (laser) and noncoherent (regular) light. Regular light contains a mixture of wavelengths and radiates in a random direction from the source. Coherent (laser) light is not present under natural circumstances, and it allows extraordinary energy density and precise focus. The acronym LASER stands for Light Amplification by the Stimulated Emission of Radiation.

Three items are required for lasers to function: an appropriate molecular medium, a photoresinator, and a way to energize the medium. An appropriate molecular medium (i.e., Argon, carbon dioxide, Nd:YAG, Holmium:YAG) suitable for lasing action has electrons that can be excited to move from lower energy levels to higher energy levels (stimulated).

A photoresinator is an optical chamber having two opposing mirrors in parallel alignment. One mirror is totally reflective and the other mirror is partially reflective (or shuttered). Photons that strike the mirror parallel to the shutters are allowed to escape from the photoresinator and become part of the laser beam, otherwise the photons are reflected within the photoresinator.

In veterinary medicine, there are three common ways to energize the molecular medium: 1) by applying a voltage in a gas discharge tube; 2) by placing an electric current across a solid semiconductor; and 3) by applying a laser light from another medium

Create a free account with TheHorse.com to view this content.

TheHorse.com is home to thousands of free articles about horse health care. In order to access some of our exclusive free content, you must be signed into TheHorse.com.

Start your free account today!

Already have an account?
and continue reading.